Ocean Applications with MERIS

30 Minutes

Vanda Brotas

Ocean Applications with MERIS

Published: 21 November 2011

Webcast on the study of ocean color which helps scientists to gain a better understanding of phytoplankton and their impact on the Earth system.

These small organisms can affect a system on a very large scale such as climate change. Phytoplankton use carbon dioxide for photosynthesis and in turn provide almost half the oxygen we breathe. The larger the world\'s phytoplankton population, the more carbon dioxide gets pulled from the atmosphere, hence, the lower the average temperature due to lower volumes of this greenhouse gas. Scientists have found that a given population of phytoplankton can double its numbers about once per day. In other words, phytoplankton respond very rapidly to changes in their environment. Large populations of these organisms, sustained over long periods of time, could significantly lower atmospheric carbon dioxide levels and, in turn, lower average temperatures. Carbon can be "stored" in oceanic sediments when organic matter sinks and is buried in the ocean floor.

Understanding and monitoring phytoplankton can help scientists study and predict environmental change. Since phytoplankton depend upon sunlight, water, and nutrients to survive, physical or chemical variance in any of these ingredients over time for a given region will affect the phytoplankton concentrations. Phytoplankton populations grow or diminish rapidly in response to changes in its environment. Changes in the trends for a given phytoplankton population, such as its density, distribution, and rate of population growth or diminishment, will alert Earth scientists that environmental conditions are changing there. Then, by comparing these phytoplankton trends to other measurements - such as temperature - scientists can learn more about how phytoplankton may be contributing to, and affected by, climatic and environmental change.

Great Britain Go to Webcast...
Powerpoint Powerpoint...

Filed under Keywords:

Ocean, Phytoplankton, Chlorophyll, Photosynthesis